Mixed Polytopes
نویسنده
چکیده
Goodey and Weil have recently introduced the notions of translation mixtures of convex bodies and of mixed convex bodies. By a new approach, a simpler proof for the existence of the mixed polytopes is given, and explicit formulae for their vertices and edges are obtained. Moreover, the theory of mixed bodies is extended to more than two convex bodies. The paper concludes with the proof of an inclusion inequality for translation mixtures of convex bodies, where the extremal case characterizes simplices. MSC 2000: 52B11, 52A22
منابع مشابه
Decomposing the Secondary Cayley Polytope
The vertices of the secondary polytope of a point connguration correspond to its regular triangulations. The Cayley trick links triangulations of one point connguration, called the Cayley polytope, to the ne mixed subdivisions of a tuple of point conngurations. In this paper we investigate the secondary polytope of this Cayley polytope. Its vertices correspond to all regular mixed subdivisions ...
متن کاملTropical Implicitization and Mixed Fiber Polytopes
The software TrIm offers implementations of tropical implicitization and tropical elimination, as developed by Tevelev and the authors. Given a polynomial map with generic coefficients, TrIm computes the tropical variety of the image. When the image is a hypersurface, the output is the Newton polytope of the defining polynomial. TrIm can thus be used to compute mixed fiber polytopes, including ...
متن کاملSingle-lifting Macaulay-type formulae of generalized unmixed sparse resultants
Resultants are defined in the sparse (or toric) context in order to exploit the structure of the polynomials as expressed by their Newton polytopes. Since determinantal formulae are not always possible, the most efficient general method for computing resultants is as the ratio of two determinants. This is made possible by Macaulay’s seminal result [15] in the dense homogeneous case, extended by...
متن کاملFPTAS for optimizing polynomials over the mixed-integer points of polytopes in fixed dimension
We show the existence of a fully polynomial-time approximation scheme (FPTAS) for the problem of maximizing a non-negative polynomial over mixedinteger sets in convex polytopes, when the number of variables is fixed. Moreover, using a weaker notion of approximation, we show the existence of a fully polynomial-time approximation scheme for the problem of maximizing or minimizing an arbitrary pol...
متن کاملLinear Programming, the Simplex Algorithm and Simple Polytopes
In the first part of the paper we survey some far reaching applications of the basis facts of linear programming to the combinatorial theory of simple polytopes. In the second part we discuss some recent developments concurring the simplex algorithm. We describe sub-exponential randomized pivot roles and upper bounds on the diameter of graphs of polytopes.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Discrete & Computational Geometry
دوره 29 شماره
صفحات -
تاریخ انتشار 2003